Expert Insights

And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.

The difference between chemistry as it happens in a flask, chemistry as we show it on paper or in a textbook and helping students to understand that these are representations and they're conceptual frameworks that we use to understand our discipline and so helping them put those two pieces together.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

The influence has been to stand back and let the students do the learning, rather than for the teacher to be barnstorming them with teaching.

When you think of things in terms of energy you can represent energy … energy can be modelled as a particle, as matter.  It can be modelled using waves and then trying to talk about how we would use each model as it's appropriate for a particular situation.  It's the sort of things we observe might dictate which model we use to explain it, by recognising that in each case there is another model but perhaps just not as useful.  So maybe it goes back to just trying to show that everything that we do is a model, every model has its upside and its downside and that we usually only use a model that’s as detailed as it needs to be for the particular concept that you're trying to get across.  If you want to get across a concept of a car to someone who has never seen a car you don't probably show them a Ferrari or a drag racing car.  Maybe you show them a Lego style block and we do the same thing with our scientific models as well.  I guess trying to get across that idea that this is the model that we're going to use but it can be a lot more complicated.  I don't want you to think it's as simple as this but it's appropriate under the circumstance.  So I guess I spend a lot of time talking about things as models when I'm talking about quantum mechanics.  Our treatment in the first year, which is where I cover it, a little bit of second year but I don't take a mathematical detail treatment of quantum mechanics.  Someone else does that, so I really bow to them. So most of mine is non-mathematical, just simple mathematics and mainly conceptual type of stuff.  I guess some of the things I try and do to illustrate the differences between the models and the way that we use them is to ask questions in class that might be postulated in such a way that you can't answer it if you're thinking about both models at the same time.  So the one I like is where I show say a 2s orbital and the probability distribution of that node in between.  I talk about things that … there's one briefly, this plum pudding model which they all laugh about.  When you look at this 2s model there is a probability and a high probability, relatively so, that the electron can be inside the nucleus, if you think about it in particle terms.  Then talk about the nodes and so on and how they arise in quantum mechanics and so on and then ask questions like if the electron can be here and here but it can never be here how does it get there?  ...  I try and get across maybe the bigger picture, everything we're going to do from this point on (because we do this fairly early in first year)  - everything is going to be a model.  Nothing is going to be right.  Nothing is going to be wrong. Nothing is going to be exactly the way it is.  Everything will be just a model. You'll hear us saying things like ‘this is how it is’ or ‘this is what's happening’.  But really you need to interpret that as ‘this is a model and this is how this model is used to explain this particular phenomenon.

So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides.  I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. 

I have one slide where I'm first demonstrating how we use curly arrows and that shows an arrow going in a particular direction from a nucleophile to an electrophile and emphasising that the arrow shows electrons moving - so it's got to start from where they are.  There has to be some electrons there for them to move.  So the whole screen goes black and comes up with a little orange box of 'never do this' which is an arrow starting from an H+, which has no electrons. The dramatic emphasis that the whole room goes dark and then it's just up there.

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

So the strategy is to reflect, to change things, to be flexible, to talk to them but not talk down to them, and certainly I would say to any young lecturer don’t be writing the lecture the night before. Know what your course is because then you can jump back and forth as you talk about something.  You can say yeah we talked about this a week ago or something like that, you know. Know what you’re going to talk about, the whole thing, because then you can put it all together as a package.

Pages